Exercise 1.26

(a) A baseball weighs 5.13 oz . What is the kinetic energy, in joules, of this baseball when it is thrown by a major league pitcher at $95.0 \mathrm{mi} / \mathrm{h}$? (b) By what factor will the kinetic energy change if the speed of the baseball is decreased to $55.0 \mathrm{mi} / \mathrm{h}$? (c) What happens to the kinetic energy when the baseball is caught by the catcher? Is it converted mostly to heat or to some form of potential energy?

Solution

Part (a)
The kinetic energy is

$$
\mathrm{KE}=\frac{1}{2} m v^{2}
$$

where

Plugging in the numbers gives

$$
\mathrm{KE}=\frac{1}{2}(0.145 \mathrm{~kg})\left(42.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \approx 131 \mathrm{~J}
$$

The conversion factors are all inside the back cover of the textbook.

Part (b)

The kinetic energy changes by a factor of

$$
\frac{\mathrm{KE}_{\text {final }}}{\mathrm{KE}_{\text {initial }}}=\frac{\frac{1}{2} m v_{f}^{2}}{\frac{1}{2} m v_{i}^{2}}=\frac{v_{f}^{2}}{v_{i}^{2}}=\frac{\left(55.0 \frac{\mathrm{mi}}{\mathrm{~h}}\right)^{2}}{\left(95.0 \frac{\mathrm{mi}}{\mathrm{~h}}\right)^{2}} \approx 0.335
$$

Part (c)

The kinetic energy of the baseball is converted mostly to thermal energy.

